

Chronic Hepatitis B (CHB)

KNOW IT BY THE NUMBERS

Start comprehensive biomarker testing, including quantitative and qualitative HBsAg, for more informed clinical decisions¹⁻⁴

- Comprehensive biomarker testing may offer more clinical insights^{5,6}
- HBV DNA and HBeAg are complementary biomarkers that guide CHB management—HBV DNA is a measure of viral replication that requires serial monitoring, while HBeAg helps define disease phase and differentiates between active and inactive CHB^{3,7,8}
- HBsAg is an important marker of active chronic HBV infection²
 - Qualitative HBsAg^{9,10}: Detects presence or absence of HBsAg to assist with diagnosis
 - Quantitative HBsAg¹⁰: Informs prognosis and clinical decisions, and tracks therapeutic progress

Comprehensive biomarker testing may offer more clinical insights^{5,6}

Real-world monitoring practices may diverge from the guideline recommendations for chronic hepatitis B (CHB)

MONITORING OF PATIENTS NOT ON TREATMENT

~50%

did not receive ALT and either HBV DNA or HBeAg testing within 12 months of CHB diagnosis¹¹ MONITORING OF PATIENTS ON TREATMENT

>60%

did not receive ALT + HBV DNA testing after antiviral treatment initiation¹² Only 40%-53%

of Asian American patients with CHB adhered to monitoring and follow-up care, which is notable because despite only making up 6% of the US population, Asian Americans account for 58% of Americans living with CHB¹³

Insufficient biomarker testing and delayed treatment initiation can increase the risk of disease progression and serious liver-related outcomes.^{7,8,14-16}

CHB leads to cirrhosis, liver failure, or HCC in 15%-40% of patients. 14,17

Persistent viremia due to inadequate monitoring and lack of treatment adjustment contributes to **ongoing liver injury and fibrosis progression.**^{7,15,16}

In 2022, HBV-related cirrhosis or HCC caused an estimated **1.1 million** deaths globally.8

ALT=alanine aminotransferase; DNA=deoxyribonucleic acid; HBeAg=hepatitis B e-antigen; HBV=hepatitis B virus; HCC=hepatocellular carcinoma.

Emerging biomarkers may reveal clinical insights that complement AASLD guidelines⁷

AASLD recommendations are based on HBeAg, HBV DNA, and Al T levels⁷

Quantitative HBsAg testing can help guide management of "grey zone" patients.

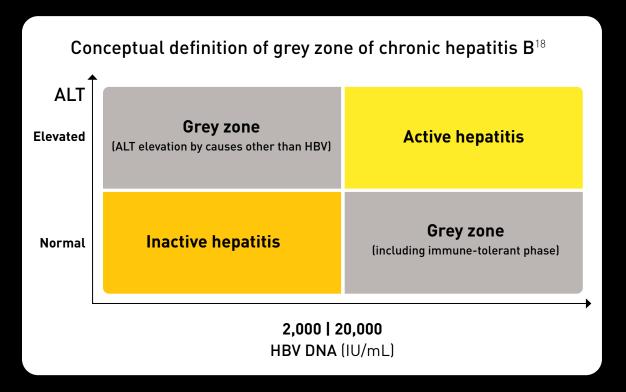


Figure used with permission. © 2024 Lim YS. Gray zone of hepatitis B virus infection. Saudi J Gastroenterol. 2024;30(2):76-82. https://journals.lww.com/sjga/fulltext/2024/30020/gray_zone_of_hepatitis_b_virus_infection.2.aspx

28%–55% of patients with CHB are viremic, but fall into a grey zone without clear guidance on optimal management and treatment. HBeAg-negative patients are in the "grey zone," in which HBV DNA or ALT levels are borderline between inactive CHB and immune-active, HBeAg-negative CHB.^{7,19}

 Quantitative HBsAg testing is an emerging biomarker gaining traction in international guidelines (EASL, CASL) due to its predictive and prognostic value, but it remains underutilized in US practice²⁰⁻²²

AASLD=American Association for the Study of Liver Diseases; CASL=Canadian Association for the Study of the Liver; EASL=European Association for the Study of the Liver; HBsAq=hepatitis B surface antigen.

In chronic hepatitis B (CHB):

Comprehensive testing of key biomarkers allows for more clarity when characterizing disease phase and severity, assessing patient prognosis, and evaluating treatment response^{7,20,21}

Biomarkers of interest

HBV DNA Quantitative Qualitative HBeAg Anti-HBe
HBsAg HBsAg antibodies

Full hepatic function panel:

ALT, AST, total bilirubin +/- direct bilirubin, alkaline phosphatase, and albumin¹

Noninvasive tests of fibrosis:

Serum APRI or FIB-4, and elastography, FibroScan, ultrasound, or MRI¹

For both cirrhotic and noncirrhotic patients, include HCC surveillance with ultrasound and alpha-fetoprotein.^{7,20}

KEY BIOMARKER: Quantitative and qualitative HBsAg testing

HBsAg testing in CHB management

- HBsAg is a viral surface protein and an important marker of active chronic HBV infection²
- It is a measure of the total transcriptional activity of both covalently closed circular DNA (cccDNA) and integrated HBV DNA in liver cells⁹
- HBsAg is believed to promote immune evasion and disease chronicity9

HBsAg tests for CHB:

Qualitative HBsAg

Detects only presence or absence of HBsAg in serum via standard immunoassays (eg, ELISA, CLIA)^{9,10}

Clinical utility^{1,7,10}:

- Initial diagnosis of HBV and screening for at-risk individuals
- Cannot inform disease activity, treatment response, or prognosis, except in rare cases of HBsAg loss

Quantitative HBsAq

Measures serum concentration of HBsAg in IU/mL via automated immunoassay^{3,20}

Clinical utility¹⁰:

 Quantitative HBsAg testing may help deliver more comprehensive evaluation—informing prognosis, treatment decisions, and tracking progress toward functional cure*

CLIA=chemiluminescence immunoassay; ELISA=enzyme-linked immunosorbent assay.

^{*&}quot;Functional" but not sterilizing cure is achievable and should be defined as sustained HBsAg loss in addition to undetectable HBv DNA 6 months post-treatment.²³

Quantitative HBsAg and its interpretation

qHBsAg	Below reference (<100 IU/mL)	Low (100-<1,000 IU/mL)	Elevated (≥1,000 IU/mL)
Interpretation	Suggests inactive CHB ^{7,24} • Risk of viral relapse reduced, varying by ethnicity • Increases the specificity of identifying patients with inactive CHB, but reduces sensitivity to 35%	Suggests inactive CHB ⁷ • May predict spontaneous HBsAg clearance in HBeAg-negative patients with a lower viral load • May require less frequent monitoring	Elevated risk of cirrhosis and HCC ¹⁰
Cirrhosis risk ¹⁰	HR 1 (reference)	HR 1.96	HR 3.5
HCC risk ¹⁰	HR 1 (reference)	HR 3.2	HR 5.4

HBsAg loss (below detection threshold of <0.05 IU/mL) serves as a reliable indicator of reduced viral DNA expression, which is associated with improved clinical outcomes.²⁰

Quantitative HBsAg is an important biomarker in assessing clinical response and functional cure. 7.20

Clinical utility of quantitative HBsAg

Prognostic Value

Predicts risk of liver fibrosis and development of HCC⁷

Identify True Inactive HBV Carriers

 Helps guide treatment approach for patients in an indeterminate stage or "grey zone" (HBeAq-negative with borderline levels of HBV or ALT)⁷

Monitor Response

• Predictor of on-treatment virologic control—helps identify potential candidates to withdraw from therapy (in combination with HBV DNA)²⁵

Determine Probability of HBsAq Loss

• Higher probability of spontaneous HBsAg clearance if <100 IU/mL^{7,26}

HR=hazard ratio.

KEY BIOMARKERS: HBV DNA and HBeAg

Real-world monitoring practices may diverge from the guideline recommendations for chronic hepatitis B [CHB].⁷

HBV DNA is a measure of viral replication and guides treatment decisions, but levels can fluctuate⁷

- Serial monitoring is more reliable than cutoff values
- Levels should be interpreted alongside other clinical variables

HBeAg indicates immune activity, helps define disease phase, and differentiates between active* and inactive CHB^{3,7,8}

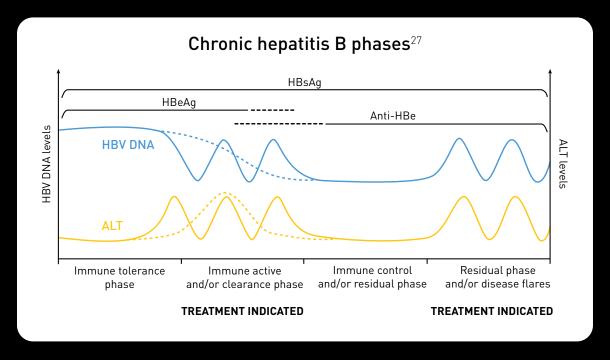


Figure used with permission. © 2018 Springer Nature. Yuen MF, et al. Hepatitis B virus infection. *Nat Rev Dis Primers*. 2018;4:18035. https://www.nature.com/articles/nrdp201835

ULN=upper limit of normal.

^{*}Per AASLD guidelines, immune-active chronic hepatitis B is defined by ALT ≥2X ULN or significant histologic disease with HBV DNA >2,000 IU/mL (HBeAg-negative) or >20,000 IU/mL (HBeAg-positive).⁷

KNOW THE NUMBERS. Know the complete picture.

Routine testing of all chronic hepatitis B biomarkers, including quantitative and qualitative HBsAg, may provide a fuller picture of patients' disease and better inform treatment decisions.^{3,10,28}

 Quantitative and qualitative HBsAg, HBeAg, and HBV DNA tests are commercially available¹⁰

Scan to explore comprehensive testing on our website

KnowHepBTesting.com

References: 1. Screening and testing for hepatitis B virus infection: CDC recommendations – United States, 2023. Centers for Disease Control and Prevention. March 10, 2023. Accessed September 5, 2025. https://www.cdc.gov/mmwr/volumes/72/rr/rr201a1.htm 2. Clinical testing and diagnosis for hepatitis B. Centers for Disease Control and Prevention. January 31, 2025. Accessed September 5, 2025. https://www.cdc.gov/hepatitis-b/hcp/diagnosis-testing/index.html.

3. Additional hepatitis B blood tests. Hepatitis B Foundation. Accessed September 24, 2025. https://www.hepb.org/prevention-and-diagnosis/diagnosis/hepatitis-b-blood-tests/ 4. Understanding your test results. Hepatitis B Foundation. Accessed August 8, 2025. https://www.hepb.org/prevention-and-diagnosis/diagnosis/understanding-your-test-results/#:~:text=Understanding 5. Wong RJ. Gastroenterol Rep (0xf). 2025;13:goaf016. 6. Wong G, Lemoine M. J Hepatol. 2025;82[5]:918-925. 7. Terrault NA, et al. Hepatology. 2018;67[4]:1560-1599. 8. Hepatitis B. World Health Organization. July 23, 2025. Accessed September 6, 2025. https://www.who.int/news-room/fact-sheets/detail/hepatitis-b 9. Lin CL, Kao JH. Clin Mol Hepatol. 2016;22[4]:423-431. 10. Ghany MG, et al.; 2022 AASLD-EASL HBV-HDV Treatment Endpoints Conference Faculty. J Hepatol. 2023;79[5]:1254-1269. 11. Pham T, et al. Med Care. 2023;61[4]:247-253. 12. Zhou Y, et al. J Viral Hepat. 2022;29[3]:189-195. 13. Ma GX, et al. Healthcare [Basel]. 2022;10[10]:1944. 14. Fattovich G. J Hepatol. 2003;39 suppl 1:S50-S58. 15. Zhang Q, et al. J Clin Transl Hepatol. 2021;9[6]:850-859. 16. Sun Y, et al. Clin Gastroenterol Hepatol. 2020;18[11]:2582-2591. 17. Lavenchy D, Kane M. Global epidemiology of hepatitis B virus infection. In: Liaw YF, Zoulim F, eds. Hepatitis B Virus in Human Diseases. Humana Press; 2016:187-203. 18. Lim YS. Saudi J Gastroenterol. 2024;30[2]:76-82. 19. You H, et al. Infect Dis Immun. 2023;3[4]:145-162. 20. European Association for the Study of the Liver. J Hepatol. 2025;83[2]:502-583. 21. Coffin CS, et al. Can

Trademarks are property of their respective owners.

